Bivalves to the Rescue: Can Bivalve Grazing Outpace HAB Growth?

By Cary Lopez, Sugandha Shankar and Steve Geiger

FWRI HAB and molluscan fisheries groups are collaborating on a one-year project funded by the Tampa Bay Estuary Program to investigate if the creation of shellfish nurseries as part of restoration efforts could have the added benefit of interfering with Pyrodinium bahamense bloom development. P. bahamense is a toxic dinoflagellate that forms high biomass blooms in Old Tampa Bay, the Indian River Lagoon (IRL), and other systems in Florida each summer. These blooms can cause shellfish harvesting area closures due to presence of paralytic shellfish poisoning (PSP) toxins (

A hard clam extends its siphon to filter-feed when exposed to a dense culture of Pyrodinium bahamense in our most recent experiment. The algal cells are seen as light brown clusters above the clam.

As filter feeders, bivalves can clear particles from over a liter of water every hour for each gram of dry body weight when feeding optimally. Clams can have up to ~ 5 grams of tissue, so that’s a lot of algae consumption! The goal of this research project will be to investigate how well targeted bivalve molluscs can feed on toxic P. bahamense. Molluscs that consume P. bahamense become toxic and cannot be consumed by humans, but they still play a critical role in healthy estuaries. We are conducting our first set of experiments with hard clams (Mercenaria spp.), and the next focus will be eastern oysters (Crassostrea virginica). If successful, these experiments may be scaled up to mesocosms once ideal species are identified.

Check out this video illustrating clam feeding efficiency!