Florida Coastal Mapping Program

By Rene Baumstark

The Florida Coastal Mapping Program (FCMaP) was initiated in 2017 as a coordinating body of Florida State and Federal partners who have a goal of achieving consistent, state-wide, high resolution seafloor data for Florida’s coastal zone in the next decade. These data will provide critical baseline information to support a range of applications including coastal security, resource management, fisheries, storm surge modeling, boating safety, and tourism, as well as future uses, such as renewable energy and offshore aquaculture.

An inventory of existing high-resolution seafloor mapping data collected on Florida’s shelf was undertaken by a technical team comprised of FCMaP partners. The footprints and metadata for 345 datasets were compiled and assessed on whether they met certain criteria such as age, spatial coverage, and resolution.  For the inventory, gap analysis, and prioritization process, the Florida peninsula was separated into six regions based on geomorphological characteristics: Panhandle, Big Bend, West Peninsula, Keys, Southeast, and Northeast. In consideration of differing sensor and survey design requirements, results in each region were further divided into two depth ranges: nearshore (shoreline out to 20 meters) and shelf (20 meters to the continental shelf break).

The gap analysis revealed that less than 20% of Florida’s coastal waters have been mapped using modern bathymetric methods (multibeam sonar or aerial lidar). The overall lack of high-resolution seafloor mapping for Florida is surprising given that Florida’s coastal areas generate more than $30 billion dollars a year in revenue, which is the 2nd highest in the nation. The region with the least amount of high resolution data is the Big Bend nearshore where less than 3% has been mapped with modern technologies. Where any data do exist, they are often lead-line measurements from the late 1800s, with one data point per 100 m2.  The data disparity between regions is large and by comparison, the best-mapped region, Southeast, FL, has modern bathymetry for 86% of its area. The reason for the discrepancy is two-fold; Southeast FL is very densely populated, and the shelf is extremely narrow in comparison with the Big Bend.

High resolution mapping gap assessment results for inshore and deeper waters for six subregions around Florida. The best mapped area are shallow waters of the SE Florida region where 39% of the seafloor has been mapped.

FCMaP is presently soliciting input from managers, planners, and decision-makers to prioritize coastal and seafloor mapping needs. A mapping prioritization tool developed by NOAA (Kendall et al., 2018; Battistia, et al., 2017) was adapted to be a FL-specific application and is being rolled out region by region via a series of stakeholder workshops. Representatives from multiple federal, state, academic, and private entities are introduced to FCMaP and discuss the relevance of high resolution seafloor maps to their regions science and management needs. A single representative from each agency is then tasked with populating the tool with input from their colleagues Analytics are then run on to generate a cumulative prioritization for the region that can be displayed as a map product, and the associated justifications for the mapping need statistically evaluated.

To demonstrate the value of a coordinated approach, FCMaP partners have also engaged in a demonstration seafloor mapping effort in the Big Bend Region. High resolution bathymetry will be collected for select key management areas. These data will be some of the first modern bathymetry collected in this region and the map products will contribute to management efforts such as fisheries stock assessments, seagrass distribution, and oyster reef occurrences. In addition, outcomes from the demonstration will be used used to investigate the influence of the variable geologic framework on coastal response and evolution, providing both enhanced management capacity and science for improved understanding of coastal behavior in this little-understood region of the eastern Gulf of Mexico.

 

References

Battista, T., Buja, K., Christensen, J., Hennessey, J., and Lassiter, K. 2017. Prioritizing Seafloor Mapping for Washington’s Pacific Coast: Sensors, 17(4). https://doi.org/10.3390/s17040701

Kendall, M.S., K. Buja, and C. Menza. 2018. Priorities for Lakebed Mapping in the Proposed Wisconsin-Lake Michigan National Marine Sanctuary. NOAA Technical Memorandum NOS NCCOS 246. Silver Spring, MD. 24 pp.