Category Archives: Information Science and Management

Hurricane Michael Displaced Vessel Response

By Jonathan Veach and Timyn Rice

With Hurricane Irma still fresh in the minds of many Floridians, Hurricane Michael made a ferocious landfall as a high-end category 4 storm near Mexico Beach on Oct. 10t, 2018. Michael was the strongest storm on record to strike the Florida Panhandle and was the strongest hurricane in terms of maximum sustained wind speed to strike the contiguous United States since Andrew in 1992. At least 60 deaths were attributed to the storm.

On Oct. 18t, FWC and the U.S. Coast Guard received a FEMA mission assignment under ESF-10 (hazardous materials) to remove the pollution threat caused by displaced vessels within state waters, similar to the response after Hurricane Irma. The total mission assignment funding is $18,600,000 and ends February 16, 2019. 1,363 displaced vessels were identified by aerial imagery and field assessments. The mission is nearly complete, with 543 targets closed out of the 544 vessels deemed as requiring action. To date, 24,381 gallons of pollutants have been recovered.

A vessel being removed from a sensitive site.

FWC Law Enforcement staffed the Incident Command Post and provided uniformed officers and patrol vessels at all recovery operations. FWRI led the Environmental Unit (EU) which identified 341 targets in environmentally sensitive areas such as salt marshes, seagrass beds, aquatic preserves, historical sites and other critical habitats. Responders used ESRI Collector and Survey 123 applications to track and document progress throughout all phases of the response. The EU established a set of Best Management Practices and provided training to the vessel response teams to protect wildlife and minimize the impacts during recovery and removal operations. Hurricanes are a reality of Florida and FWC takes these operations with the respect they deserve.

Florida Coastal Mapping Program

By Rene Baumstark

The Florida Coastal Mapping Program (FCMaP) was initiated in 2017 as a coordinating body of Florida State and Federal partners who have a goal of achieving consistent, state-wide, high resolution seafloor data for Florida’s coastal zone in the next decade. These data will provide critical baseline information to support a range of applications including coastal security, resource management, fisheries, storm surge modeling, boating safety, and tourism, as well as future uses, such as renewable energy and offshore aquaculture.

An inventory of existing high-resolution seafloor mapping data collected on Florida’s shelf was undertaken by a technical team comprised of FCMaP partners. The footprints and metadata for 345 datasets were compiled and assessed on whether they met certain criteria such as age, spatial coverage, and resolution.  For the inventory, gap analysis, and prioritization process, the Florida peninsula was separated into six regions based on geomorphological characteristics: Panhandle, Big Bend, West Peninsula, Keys, Southeast, and Northeast. In consideration of differing sensor and survey design requirements, results in each region were further divided into two depth ranges: nearshore (shoreline out to 20 meters) and shelf (20 meters to the continental shelf break).

The gap analysis revealed that less than 20% of Florida’s coastal waters have been mapped using modern bathymetric methods (multibeam sonar or aerial lidar). The overall lack of high-resolution seafloor mapping for Florida is surprising given that Florida’s coastal areas generate more than $30 billion dollars a year in revenue, which is the 2nd highest in the nation. The region with the least amount of high resolution data is the Big Bend nearshore where less than 3% has been mapped with modern technologies. Where any data do exist, they are often lead-line measurements from the late 1800s, with one data point per 100 m2.  The data disparity between regions is large and by comparison, the best-mapped region, Southeast, FL, has modern bathymetry for 86% of its area. The reason for the discrepancy is two-fold; Southeast FL is very densely populated, and the shelf is extremely narrow in comparison with the Big Bend.

High resolution mapping gap assessment results for inshore and deeper waters for six subregions around Florida. The best mapped area are shallow waters of the SE Florida region where 39% of the seafloor has been mapped.

FCMaP is presently soliciting input from managers, planners, and decision-makers to prioritize coastal and seafloor mapping needs. A mapping prioritization tool developed by NOAA (Kendall et al., 2018; Battistia, et al., 2017) was adapted to be a FL-specific application and is being rolled out region by region via a series of stakeholder workshops. Representatives from multiple federal, state, academic, and private entities are introduced to FCMaP and discuss the relevance of high resolution seafloor maps to their regions science and management needs. A single representative from each agency is then tasked with populating the tool with input from their colleagues Analytics are then run on to generate a cumulative prioritization for the region that can be displayed as a map product, and the associated justifications for the mapping need statistically evaluated.

To demonstrate the value of a coordinated approach, FCMaP partners have also engaged in a demonstration seafloor mapping effort in the Big Bend Region. High resolution bathymetry will be collected for select key management areas. These data will be some of the first modern bathymetry collected in this region and the map products will contribute to management efforts such as fisheries stock assessments, seagrass distribution, and oyster reef occurrences. In addition, outcomes from the demonstration will be used used to investigate the influence of the variable geologic framework on coastal response and evolution, providing both enhanced management capacity and science for improved understanding of coastal behavior in this little-understood region of the eastern Gulf of Mexico.



Battista, T., Buja, K., Christensen, J., Hennessey, J., and Lassiter, K. 2017. Prioritizing Seafloor Mapping for Washington’s Pacific Coast: Sensors, 17(4).

Kendall, M.S., K. Buja, and C. Menza. 2018. Priorities for Lakebed Mapping in the Proposed Wisconsin-Lake Michigan National Marine Sanctuary. NOAA Technical Memorandum NOS NCCOS 246. Silver Spring, MD. 24 pp.

Changes in Seagrass Within Indian River Lagoon System

By Renee Duffy

Modern methods of remote acquisition, image data processing and modeling have presented new opportunities to research and better understand the complexities of seagrass ecology. The high spatial and spectral resolution information provided by modern airborne sensors such as satellite imagery presents opportunities to monitor subtle yet ecologically important changes in seagrass abundance.

In 2016, FWRI’s Center for Spatial Analysis received funds from FDEP’s Coastal Management Program to quantify long term changes in seagrass cover within the Indian River Lagoon (IRL) system. The demand for improved mapping and monitoring submerged resources in the IRL was driven, in part, by unprecedented losses in seagrass resulting from several algal ‘super bloom’ events starting in 2011.

The study employed a supervised classification method to map seagrass percent cover by relating spectral values in the satellite image to percent cover observations collected at fixed station transects by the St. John’s River Water Management District (SJRWMD) and the Ecological Program at NASA’s Kennedy Space Center.

Worldview-2 satellite imagery and seagrass percent cover observations along a fixed station transect routinely monitored by the SJRWMD.

Results indicated considerable declines in percent cover between 2010 and 2016. The extent of seagrass loss, however, was spatially and temporally variable throughout the lagoon system. Throughout the study area, seagrass cover was highest in 2010 and 2011 just prior to the 2011 super bloom and then declined considerably in 2012. In several areas, there were signs of recovery with increased percent cover in 2013, however, seagrass declined in 2015 and was nearly absent in most areas by 2016.

Declines in seagrass percent cover were highest in the southern portion of the Indian River Lagoon and throughout the Banana River with as much as 100% loss of the densest seagrass (75-100% cover). While complete loss of seagrass was observed by 2015 and 2016 in some areas, there was a general pattern of “thinning” in seagrass percent cover throughout the study area. This pattern is characterized by replacement of dense seagrass (>50% cover) with sparse, low density seagrass (<25% cover). The extent of this variation was not detectable from small scale in situ transect monitoring nor from temporally limited aerial photography. Results of the study emphasized the need for evaluating landscape-scale variability in seagrass percent cover using a variety of remote sensing technologies.

FWRI Researchers Catalog the José Torres Collection

By Jonny Veach

In response to the Deepwater Horizon disaster in 2010, USF Professor Emeritus Dr. José J. Torres spearheaded a study to assess the oil spill’s effect on deeper, mesopelagic and midwater species that were migrating vertically through oil plumes – “RAPID Deepwater Horizon Oil Spill: Impact of sub-surface oil plumes on mesopelagic fauna”.

The “RAPID Deepwater Horizon Oil Spill” study obtained a wide array of mesopelagic fauna, including the deep sea hatchetfish, as seen above. Specifically, the Deepwater study sought to document the effects of the oil spill on the highly diverse and vertically mobile fish and crustacean species of the water column, since most species reside at depths below 600 meters during the day, but migrate into the upper 250 meters at night. Because of this migration, a large portion of the mid-water community would be migrating through oil plumes. Because of a very deep well-head and extensive use of dispersants, the chances that these organisms would encounter petroleum hydrocarbons was very high. The data collected in this project provides a stable isotope baseline allowing for evaluation of present and future subsurface oil impact.

Various specimens being identified by FWRI researchers.

Researchers at the FWRI are currently in the process of determining exactly what species are present in the Torres collection. Some of the groups represented in the samples are diverse species of fishes, shrimp, jellyfish, amphipods, pyrosomes, salps and more. Many of these species have bioluminescent organs or other adaptations for living in the dark. One of our FWRI interns, Vang Thach, is working through the invertebrates to definitively identify which species are present.

There is currently no active research involving these specimens, but by cataloging and inventorying the collection, they will be made available for research purposes. FWRI received the collection from Dr. Torres in April 2013. The Torres collection is particularly noteworthy because the FWC doesn’t normally collect at these depths for usual monitoring programs. These deeper water specimens are very valuable in part because of the expense of physically collecting these specimens. The Torres collection is here to stay as a permanent collection item for the FWRI, to serve as an important looking-glass into mesopelagic gulf species for the future.

Meet FWC’s Climate Adaptation Core Team

By Lily Swanbrow Becker

This fall will mark ten years since FWC officially began its work on climate change adaptation by hosting a statewide summit.  Since then, we’ve traveled down a long and winding path.  Our team has gained and lost talented staff along the way but the journey has been a productive one and today we find ourselves with a dedicated, cross-divisional team and a long list of accomplishments.  Previous iterations of the Climate Adaptation Core Team have worked with internal staff and partners to complete climate vulnerability assessments, integrate adaptation into our State Wildlife Action Plan, host training and scenario planning workshops and publish a comprehensive guide to Florida natural resource adaptation, accessible to anyone here, to name a few examples.  These days, our small team is looking to the future and setting a course of priority goals and actions for the next five years.

In the beginning, we focused on laying the groundwork by pursuing critical science to better understand the projected impacts of climate change on Florida fish and wildlife and identifying key vulnerabilities.  We’re now in a great position to continue building on this knowledge and technical capacity by helping to coordinate and strengthen research and monitoring programs, leveraging funding opportunities and developing a data sharing platform to support and coordinate the important research FWC staff and partners are doing.  However, as we set our sights on the end goal of integrating climate adaptation throughout the agency and implementing meaningful on-the-ground adaptations actions, we are increasingly focusing on the importance of communicating effectively and building internal capacity and community.

One of the first steps in that process is the very intent of this brief update: we’d like to let you know we’re here!  Our team recently began an internship program based out of Tallahassee and our new climate adaptation interns have done an excellent job launching a monthly newsletter.  If you’d like to stay updated on climate-related funding opportunities, events, resources, publications and more, please send a brief email to Lily, mentioning that you’d like to subscribe.  As we continue moving toward finalizing our five-year goals and work plan this spring, we’ll be adding more content to our team SharePoint site, which you’re always welcome to explore.  And finally, if you’re already working on a climate-related topic and you’re not connected with our team, we’d love to hear from you.  We’ll have many opportunities for collaboration in the days ahead and we hope to make as many connections throughout FWRI as possible, as we carry forward working on this pressing issue.

Current Climate Adaptation Core Team Members: René Baumstark (FWRI), Brian Branciforte (HSC), Terry Doonan (HSC), Bob Glazer (FWRI), Beth Stys (FWRI), Lily Swanbrow Becker (HSC/FWRI)

Living Shoreline Suitability Model for Tampa Bay: A GIS Approach

By Chris Boland

Because of the threat of shoreline erosion from strong storm action and sea level rise affecting waterfront property values, considerable attention has been focused on shoreline protection.  In the recent past, shorelines have been “stabilized with hardened structures, such as bulkheads, revetments, and concrete seawalls.  Ironically, these structures often increase the rate of coastal erosion, remove the ability of the shoreline to carry out natural processes, and provide little habitat for estuarine species.”[1]  Alternatively, government agencies responsible for resource protection have proposed more natural bank stabilization and erosion control called “living shorelines,” which NOAA defines as: “… a range of shoreline stabilization techniques along estuarine coasts, bays, sheltered coastlines, and tributaries… [that]… incorporates [natural] vegetation or other living, natural ‘soft’ elements alone or in combination with some type of harder shoreline structure (e.g. oyster reefs or rock sills) for added stability… [to] maintain continuity of the natural land-water interface and reduce erosion while providing habitat value and enhancing coastal resilience.”[2]

Figure 1

FWRI’s Center for Spatial Analysis (CSA) has taken an interest in living shorelines in the Tampa Bay region and, as a state partner in the Gulf of Mexico Alliance (GOMA), became aware of the Virginia Institute of Marine Science’s (VIMS) Living Shoreline Suitability Model (LSSM)[3] and its application in Mobile Bay, Alabama.[4]  VIMS developed the LSSM in ESRI’s ArcGIS Model Builder based on a decision tree that can assist in identifying appropriate living shoreline treatments to an area (Figure 1).  Because of the LSSM’s success in identifying locations where a living shoreline restoration project may be effective, CSA’s Kathleen O’Keife and Chris Boland received grant funding from GOMA’s Habitat Resources Team (HRT) to apply the LSSM to the Tampa Bay region.

The LSSM requires information about existing environmental conditions to correctly apply the decision tree, such as existing habitat, slope of coastal waters, environmental conditions (e.g. fetch, current speed, and sunlight shading), and potential construction barriers (e.g. nearby road or permanent structures).  The recently updated (June 2016) environmental sensitivity index (ESI) dataset, originally collected for oil spill response purposes, answered many of these required criteria and so became CSA’s base input dataset to the model.  CSA staff spent approximately four months of full-time work to manually review each of the 5,162 shoreline segments, which ranged in length from about 100 feet to about 500 feet and classified the remaining required data fields appropriately.

Once completed, the LSSM model was run based upon the derived input dataset and completed in less than an hour.  The model outputs resulted in additional fields that provide property owners and management entities with suggested Upland Best Management Practices (BMP) and Shoreline BMPs. [5]  The results are displayed in Figures 2 and 3.  Overall, the modified LSSM recommended the installation of a living shoreline to approximately 33% of the shoreline, protection from a “harder” landscape protection method to about 11% of the shoreline, and was unable to recommend a BMP to the rest (56%) Tampa Bay area’s shoreline, typically because the installation of a living shoreline would be obstructed by an existing shoreline condition.

Figure 2

Figure 3

The model results can be reviewed in CSA’s educational materials that were developed as grant deliverables.  The ArcGIS Online story map ( was developed to inform the general public of the use of living shorelines as a shoreline protection alternative, and the Web Mapping Application ( was intended to assisting managers in identifying potential preservation and mitigation areas.

[1] (National Oceanic and Atmospheric Administration, n.d.)

[2] (National Oceanic and Atmospheric Administration (NOAA), 2015)

[3] (College of William and Mary: Virginia Institute Of Marine Science: Center for Coastal Resource Management, 2018)

[4] (Woodrey, 2016)

[5] (VIMS: Center for Coastal Resource Management Program, 2015)


The Florida Wildlife Magazine Digital Preservation Project

By Robin Grunwald

The Florida Wildlife Magazine was first published in 1947 by the Florida Game and Fresh Water Fish Commission (FGFC) for educating the public in an entertaining format. With support from the legislature, the serial was created to convince the public hunters, anglers, and recreationalists of regulatory benefits and conservation. It is a collection of art and narratives by some of Florida’s most distinguished naturalists. The FWC Research Information Center (RIC) currently receives requests for FWM articles from scientists seeking earlier FGFC perspectives and regulations. A request for all the articles related to bears inspired a project idea to create an online collection of the magazine.

Access to information is a critical component of conservation education and effective research. The Fish and Wildlife Research Institute’s (FWRI) focus on sharing knowledge for advancing science and improving connections to Florida’s environment recognizes this mission includes access to important historical narratives. With support from the FWRI, the RIC was awarded funding from the William H. Flowers, Jr. Foundation and the Fish and Wildlife Foundation of Florida to preserve and share a digital format of the Florida Wildlife Magazine collection in the agency’s publicly accessible repository- the FWC Digital Library. This open online access provides research opportunities to educators, scientists, and stakeholders.

Preserving the Florida Wildlife Magazine accounts of Florida’s hunting and fishing heritage is also important for establishing a permanent archive of Florida’s rich fishing and wildlife history. The RIC hired Kim Rousseau to learn digital imaging for preservation and create metadata on every article for the most obscure first 30 years of the serial. Every issue from 1947 through 1979 was digitized to Federal Agencies Digital Guidelines for archival preservation.

The Florida Wildlife Magazine Digital Preservation Project safeguards this Florida treasure and its significant record of progression to Florida’s current regulatory environment into perpetuity. The project also directly speaks to the current mantra of prominent research libraries by creating wider access to research via digital content. The FWCDL is currently the only option for online access to an archive collection of the early Florida Wildlife Magazine editions.

National Park Service Voucher Specimens to be Housed at SIS: the “Robblee Collection”

By Paul Larson

The culture of modern science is tending more and more toward open access to raw data. Just as it is good practice (and often required) to deposit DNA sequences in GenBank before publishing findings or to deposit phylogenetic results in TreeBASE, these studies and ecological studies that rely on species identification should be producing voucher specimens to be stored in collections like the one in Specimen Information Services here at FWRI. Through these collections, we may reinterpret or validate old results with modern methods, observe changes in species and populations through time, and leverage emerging technologies to extract new data from the past without the need for a time machine.

Through the 1980s, 90s, and 2000s, several research projects conducted by Mike Robblee and colleagues in the Everglades and Biscayne National Parks yielded tens of thousands of fish and decapod crustacean specimens, all of which were retained by the National Park Service South Florida Collections Management Center. These specimens had been stored in bags contained by approximately 230 3-gallon buckets. Former SIS curator Dr. Robert Lasley secured a $95,000 grant from the National Parks Service to properly curate and maintain a subset of these specimens in SIS to serve as vouchers for those projects and to provide training opportunities for employees, students, and recent graduates in all aspects of stewardship of natural history collections.

The project is a multi-step process. Currently, we have two part-time employees and a small army of interns producing an inventory of the bucket contents and re-housing the specimens in archival containers. Next, we will develop a retention plan to select a subset of the specimens to be maintained as vouchers indefinitely within the collections here at FWRI. This retention strategy will be guided by the goals of the NPS, SIS, and the original research and monitoring projects. Finally, we will catalog the retained specimens and determine a fate for those specimens not to be retained (discard, donation, etc.).

Upon completion, this accession will serve as a resource for future investigations and as an archived documentation of the data collected in the course of the projects which have yielded these samples.


The FWC Reporter: a Mobile App for Citizen Reporting to FWC

By: Richard Flamm & Lauren Partridge

Citizen reports of fish and wildlife observations are common to agencies like ours. Reports range across a variety of disciplines, including wildlife violations, injured animals, fish kills, exotic species and general species identification. These kinds of interactions with the public can be considered a form of social networking with smartphones as the primary networking tool. More people are now using smartphones than desktop or laptop computers and mobile apps more than fixed internet access web pages. Our agency’s citizen engagement strategy must adapt to this reality.

One step toward this reality is the FWC Reporter. This app provides a reporting platform for citizens committed to mobile communication devices. It accepts enhanced data functions from the user like images, video files, GPS, and date-time that can be sent as part of the reporting email. It can also integrate with and enhance FWC’s citizen science programs as well as partner with organizations inside and outside FWC. The FWC Reporter is the first comprehensive multi-species reporting app produced by any fish and wildlife agency in the U.S.

Before we could get started we needed to assess the mobile app marketplace and our app’s value proposition, understand the theory behind designing, building, and launching a successful mobile app, and build a team that includes the designer and programmer, FWC offices that receive reports, testers, and outreach and marketing specialists.

The marketplace is not about us. It is about our users, so the design of the FWC Reporter does not project what we as FWC employees think it should be, but what we understand our user base will accept and use. The FWC Reporter aims for the broadest user base possible. To achieve a broad user base, we applied the concepts below.

Value proposition (VP) is an understanding of the benefits received from a product when compared to its costs. An understanding of VP informs any app’s design and engagement strategy. Successful commercial mobile apps tend to provide users with a high VP through entertainment (games), utility (directions, prices, ratings, etc.), and social networking. The VP for the FWC Reporter is relatively low. The user receives some value such as participating in the rescue of injured wildlife or reporting a fish kill, but most of the value goes to the agency.

The low VP suggests that the design of the FWC Reporter should be simple and fast to use. We employed the heuristic concept of “fast and frugal” and applied inductive reasoning in the menu listings illustrated by having more specific items at the top of the list and more general at the bottom. We used plain language when possible and we also avoided dead ends – something the user wants to report, but no way to do so in the app.

The FWC Reporter works within FWC’s existing citizen engagement system. At its simplest, it is a telephone that people use to call the agency. It also allows the user to contact the agency via email, and automatically attaches GPS coordinates, a time-date stamp, the user’s email and a photo if they took one. Offices receiving emails may also receive a phone call if they choose. All methods for public interaction with any office was specified by that office.

FWC/FWRI Information Science and Management staff designed and programmed the app with input from OIT, offices that receive reports, their supervisors, and the public. Building the app within FWC has allowed us the necessary flexibility to change or add functionality on FWC’s schedule. The app is available on Android and Apple app stores at no charge.

The Peninsular Florida Landscape Conservation Cooperative

By Cherie Keller and Sarah Friedl

The Peninsular Florida Landscape Conservation Cooperative (PFLCC), one of 22 LCCs throughout North America, the Caribbean and Pacific Islands, is an applied conservation partnership with the goal of fostering landscape-scale conservation across man-made boundaries to sustain natural and cultural resources for the benefit of both people and wildlife. Although PFLCC’s focus is a single state, and provides funding to the Fish and Wildlife Research Institute (FWRI) to conduct some of the program’s work.  Its missions and values are similar to those of Florida’s Wildlife Legacy Initiative (FWLI), the PFLCC and FWC are working together and aligning many aspects of their respective programs. The alliance of FWC and PFLCC with its many governmental and non-governmental partners, provides opportunities to coordinate conservation designs, avoid duplicated effort, and leverage resources.

PFLCC uses an adaptive management framework of Strategic Habitat Conservation (SHC), a science-based, transparent and accountable method for conservation planning, design and delivery (see SHC figure). The framework begins with a high degree of planning, but repeatedly cycles through delivery, re-evaluation, and revision. PFLCC’s Conservation Blueprint V 1.0 (see Conservation Blueprint figure) was adapted from the Florida Cooperative Land Cover amp and further refined by the top two priority levels of the Critical Lands and Waters Identification Project (CLIP), a collaborative, natural resource prioritization model. The PFLCC’s Priority Resources are the biological, ecological and cultural features and ecological processes that are identified as most important, and are the core of PFLCC’s planning. The current Blueprint displays Terrestrial and Freshwater PRs (see PFLCC’s website below). Future versions will include Estuarine and Marine PRs that are currently in development.

The condition of each PR will be measured through Conservation Targets (CTs), or ‘biological indicators’ relating to important attributes of the PR. Effective CTs are informative, responsive to the environment and management, and have monitoring data available. We enlisted stakeholders to generate lists of potential CTs (e.g., important attributes of a PR) and their potential measurements through brainstorming workshops. Before each workshop adjourned, stakeholders prioritized each list of potential CTs for further evaluation.

Each suggested CT and potential metrics must be vetted for potential selection as a final CT. First, there must be data. At a minimum, data must be readily available for a large portion of the PR, and be updated relatively frequently. Numerous entities collect conservation data in Florida, but not always in a consistent manner statewide nor stored in a collective repository. More often, data are collected in a localized area for a focused purpose, and are not part of a coordinated, statewide effort. Fortunately, there are data that meet our criteria for many CTs and the vetting process forges on.

Once an initial set of CTs are selected (always an ongoing process), we will establish a ‘numerical target,’ or benchmark, for each CT. Targets will be adopted from current management plans when they exist, and determined by partner consensus when they don’t. CTs, along with their metrics and numerical targets, provide the means to evaluate PR condition and offer guidance as to which CTs and PRs are in greater need of attention and resources. CTs also provide the means to communicate PR condition, using simple data visualizations, to decision-makers and the public well beyond our immediate conservation community.

Workshops for the Estuarine and Marine PRs/CT identification wrapped up in June. You still have a chance to contribute comments and suggestions in an online forum. As always, we welcome your input! The tough process of vetting these data has just begun but we will keep you posted along the way.

For more information about the PFLCC, our staff, or learn about upcoming events, please visit our website.